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Abstract

We define geometric crystals and unipotent crystals for arbitrary Kac—Moody groups and describe
geometric and unipotent crystal structures on the Schubert varieties. We give some examples in
affinesl,-case.
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1. Introduction

The theory of crystal base introduced by Kashiwara succeeds in being applied to many
areas in mathematics and mathematical physics to clarify their combinatorial behavior.
One of the reasons why it can be well-applied is that it allows not only “real crystals” but
also “virtual crystals”, e.g.B; (seeSection §, B, (seeSection 7, 1, (se€[7]),etc, where
“virtual crystals” mean certain crystals not having the correspontljf{g)-modules, which
are purely combinatorial objects. Some of them are obtained as ‘limit’ of real crystals and
they have good combinatorial properties, e.g., the cry$tadsd B, are regarded as some
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limits of real crystals. ‘Real one’ and ‘virtual’ one are deeply related to each other. Indeed,
the “real crystal’B(1) (resp.B(c0)) is described as a subcrystal in infinitely many tensor
products of “virtual crystalsB;’s (see[17-19), where B(1) (resp. B(c0)) is a crystal
of the irreducible integrable highest weight modulg.) (resp. a crystal of the subalgebra
U, (9))- Inthis sense, the theory of crystals would cover wider area than usual representation
theory of the quantum algebi3, (g) does. Roughly, we can say that real crystal bases are
obtained by taking the limiy — 0 from some bases df,(g)-modules, which is called
“crystallization”. But, “virtual” ones are not gotten by such crystallization procedure from
U,(g)-modules.

Berenstein and Kazhdan clarif§] that such “virtual crystals” also have some “real”
backgrounds as the “tropicalization/ultra-discretization” of “geometric crystals” for semi-
simple(reductive) groups.

{Global Bases of U,(g)-modules}

_ -7 Q rystallization

= ultra—discretization melting

£
{Geometric Crystals} {Crystals}

tropicalization

Recently, by the ultra-discretization/tropicalization method, the relations between soliton
cellular automaton and crystals are revealed (see[4,§]). In the meanwhile, it is well-
known thatflag varietie§/ B (reps.G/ P) plays a significantrole in the soliton theory, where
G is an affine Kac—Moody group anBl (resp.P) is its Borel (resp. parabolic) subgroup.

We would like to find the connection of affine flag varieties and geometric crystals. For
the purpose, we shall extend the theory of geometric/unipotent crystats Kac—Moody
setting. And then we shall define geometric/unipotent crystals on Schubert cells/varieties
associated with Kac—Moody groups. We consider some ‘positive structures’ on them (see
Section , and we show that some ultra-discretizations of the geometric crystals on Schubert
varieties are isomorphic to tensor products of some Kashiwara’s crystals. These results are
simple generalizations of the results[it] for reductive setting to the one for the Kac—
Moody setting. Thus, in order to show the validity of the extension to Kac—Moody settings,
we shall present an interesting example for affihecase by showing that some geometric
crystals on affine Schubert cells/varieties are related to “perfect crystals”. They are affine
crystals associated with quantum affine algebras and play an important role in studying
vertex type solvable lattice moddR;10]. There exists some “limit” of perfect crystdR]
denoted byB., and we shall see that an ultra-discretization of certain geometric crystal
on affine Schubert varieties coincides with tifig, for ?[z-case. As for higher rank affine
cases, we will discuss in forthcoming papers.

The organization of the article is as follows; $®ction 2we review briefly the theory
of Kac—Moody groups, ind-varieties and ind-groupsSkction 3 we define the notion of
unipotent crystals in Kac—Moody setting and their product structures. We also define the
notion of geometric crystals and give a recipe for obtaining canonically geometric crystals
from unipotent crystals followingl]. In Section 4 on finite Schubert cells/varieties we
induce the structure of unipotent/geometric crystalsSéttion 5 we recall the notion
of positive structure on geometric crystals and define ultra-discretization/tropicalization
operations. We also consider certain positive structure of geometric crystals on Schubert
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cells and show that its ultra-discretization is isomorphic to (Langlands dual of) Kashiwara’s
crystalB;;, ® --- ® B;,. In Section 6 we apply the result isection 5to give a new proof

of braid-type isomorphismgL9]. In the last section, we shall see how to relate certain
geometric crystal on an affine Schubert cell and the limit of perfect crﬁggefbr?[z-case.

2. Kac—Moody groups and Ind-varieties

In this section, we review Kac—Moody groups followifig,15,22]

2.1. Kac—Moody algebras and Kac—Moody groups

Fix a symmetrizable generalized Cartan matix= (a;;);, jer, wherel be a finite index
set. Let €, {«;}icr, {hi}ics) be the associated root data, whebe the vector space over
with dimension|/|+ corank@), and{«;};c; C t* and{h;};c; C t are linearly independent
indexed sets satisfying;(h;) = a;;.

The Kac—Moody Lie algebrg = g(A) associated withd is the Lie algebra ove€
generated by, the Chevalley generatoesand f; (i € I) with the usual defining relations
[13,15] There is the root space decompositipe: P, _¢+ g,,. Denote the set of roots by
A={aet'la#0,g, #O). SetQ =3, Za;, Q+ =Y ; Z=ox; and Ay := AN Q.
An element ofA . is called a positive root.

Define simple reflections; € Aut(t) (i € I) by s;(h) := h — o;(h)h;, which generate
the Weyl groupW. We also define the action d¥ on t* by s;(A) := A — a(h;)a;. Set
A" = {w(a;)|lw € W, i € I}, whose element is called a real root.

Let ¢’ be the derived Lie algebra gfand G* be the free group generated by the free
product of the additive groups, (o € A'™), with the canonical inclusioi, : g, < G*.
For any integrablg’-module {, ), a homomorphism?, : G* — Autc(V) is defined by
7y (ia(e)) = expm(e). SetN* = Ny.integrabiKer(ry,) andG = G*/N*, which is called a
Kac—Moody group associated with the Kac—Moody Lie alggfpraetp : G* — G be the
canonical homomorphism. Fere g, (¢ € A™), defineexg := p(iy(e)) andU, := expg,,
which is a one-parameter subgroughfThe groupG is generated by, (« € A™). LetU*
be the subgroups generatedly,, (¢ € A" = AN Q.),i.e.,UL = (Usqala € A™S).

For anyi € I, there exists a unique homomorphispp; SL>(C) — G such that

1¢ 10
i 01 = expte;, b; ‘1 = exptfi(t € C).

SetG; = ¢i(SL2(C)),

xi(f) := expte;, yi(t) = exptfi, T; = ¢;({diagt, r~1)|t € C}) and N; := Ng,(T;). Let
T (resp.N) be the subgroup af generated b¥; (resp.V;), which is called anaximal torus
in G andB* = U*T be the Borel subgroup @. We have the isomorphisg: W—>N/T
defined byg(s;) = N;T/T. An elements; := x;(—1)y;(1)x;(—1) is in Ng(T), which is a
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representative of, € W = Ng(T)/T. DefineR(w) for w € W by
R(w) :={(i1, i2,...,0;) € 1[|u) = SiySip * Siphs

where! is the length ofw. We associate to eaah € W its standard representative
Ng(T) by

forany (1, i2, ..., i) € R(w).

2.2. Ind-variety and Ind-group

Let us recall the notion of ind-varieties and ind-groups (424).
Definition 2.1. Let k be an algebraically closed field.

(i) A setX is anind-varietyoverk if there exists a filtrationXg C X3 € Xo C --- such
that
(@) UpsoXn = X.
(b) EachX, is afinite-dimensional variety ovérsuch that the inclusioX,, — X, 41
is a closed embedding.
The ring of regular functiong[ X] is defined by
K[X] 1= lim k[X,].

(i) A Zzariski topologyon an ind-varietyX is defined as follows; a sét C X is open if
and only ifU N X, is open inX,, for anyn > 0.

(i) Let X andY be two ind-varieties with filtration§X,,} and{Y,} respectively. A map
f X — Y is amorphismif for any n > 0, there exist&: such thatf(X,) C Y,, and
fx, : Xn = Yy isamorphism. A morphisnf : X — Y is said to be amsomorphism
if fis bijective andf~1:Y — X is also a morphism.

(iv) Let X andY be two ind-varieties. Aational morphismf : X — Y is an equivalence
class of morphismgy : U — Y whereU is an open dense subset ¥f and two
morphismsfy : U — Y and fy : V — Y are equivalent if they coincide drin V.

Lemma 2.2.

(i) Afinite dimensional variety ovérholds canonically an ind-variety structure
(i) If X andY are ind-varietiesthenX x Y is canonically an ind-variety by taking the
filtration

(X xY), =X, xY,.



Toshiki Nakashima / Journal of Geometry and Physics 53 (2005) 197-225 201

Definition 2.3. An ind-varietyH is called arind (algebraig-groupif the underlying setd
is a group and the maps

HxH-—H H-—H

(x, y) > xy x> x1

are morphisms of ind-varieties.

Proposition 2.4. (Kumar[12])

(i) LetG be a Kac—Moody group antd®, B* be its subgroups as above. Théris an
ind-group andU*, B* are its closed ind-subgroups
(ii) The multiplication maps

TxU—B U xT— B~

(t, u) — tu (v, 1) > vt

are isomorphisms of ind-varieties

3. Geometric crystals and unipotent crystals

In this section, we define geometric crystals and unipotent crystals associated with Kac—
Moody groups, which is just a generalization[®f to a Kac—Moody setting.

3.1. Geometric crystals

Let (4;5)i, jer be asymmetrizable generalized Cartan matrix@r the associated Kac—
Moody group with the maximal torus. An elementin Honi(; C*) (resp. HomC*, T)) is
called acharacter(resp.co-charactey of 7. We define aimple co-root,” € Hom(C*, T)

(i € I) by ) (r) := T;. We have a pairinge,’, o) = a;;.

Definition 3.1.

(i) Let X be an ind-variety oveC, y : X — T be a rational morphism and a family of
rationalC-actionse; : C* x X — X (i € I);
¢ C*x X —X
(c, x) = € (x).
The triplet x = (X, ¥, {ei}ics) IS a geometric pre-crystalf it satisfies {1} x X C

dome;), eX(x) = x and

y(ei (x) = o (©)y (). 3.1)
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(i) Let(X, yx, {eX}ier)and ¥, vy, {e! }ics) be geometric pre-crystals. Arational morphism
f X — Y is amorphism of geometric pre-crystafsf satisfies that

foef=elof yx=wof

In particular, if a morphisny is a birational isomorphism of ind-varieties, it is called
anisomorphism of geometric pre-crystals

Let x = (X, y, {ei}ics) be a geometric pre-crystal. For awarg (i1, i, ..., ij) € R(w)
(w e W), sete® = a;, 0l 1= 5 (s, ,), ..., D i= 55, - - 53, (ctiy ). Now for awordi =
(i1, i2, ..., i;) € R(w) we define a rational morphisem: 7 x X — X by

W@ o 0)
(t,x) > el(x) == ef‘ll (t)ef‘: o.. ~ef§1 D).

Definition 3.2.

(i) A geometric pre-crystay is called ageometric crystalf for any w € W, and anyi,
i’ € R(w) we have

e = e¢j. (3.2)

(i) Let (X, yx, {eiX}ia) and (Y, yy, {e,-Y}ia) be geometric crystals. A rational morphism
f: X — Yis called anorphism(resp. arisomorphismof geometric crystalg it is a
morphism (resp. an isomorphism) of geometric pre-crystals.

The following lemma is a direct result froph, Lemma 2.1nd the fact that the Weyl group
of any Kac—Moody Lie algebra is a Coxeter grdépProposition 3.13]

Lemma 3.3. The relationg3.2) are equivalent to the following relations

c1 C2 _ C2 C1 : Y N\ —
eitel = efe if (o), ;) =0,
C1 C1C2 C2 __ €2 C1C2 C1 : Vv — \ —
ejtef e = efei e if (o, ;) = (aj, o) = —1,
2 2
c1 €162 ci1c2 c2 €2 cC102 €12 c1 ; Vv N = Vv N =
eitej e e} = efe e e if (e oj) = =2, (o}, ;) = =1,

2 3 3.2 3.2 .3 2
€1,6162 C1€2 C1Cp c1c2 ,C2 €2 C1C2 €162 C1€2 C1C2 c1 Voo — Vo —
elej et e e et =efei e te e e if (o o) = =3, (af, ) = —1.

Remark. If (), ocj)<aJV, «;) > 4, there is no relation betweepande;.
3.2. Unipotent crystals

In the sequel, we denote the unipotent subgrdpby U. We define unipotent crystals
(se€[1]) associated to Kac—Moody groups.
The definitions below are as [f@].

Definition 3.4. Let X be an ind-variety ove€ andw : U x X — X be a rationalU-action
such thatx is defined on{e} x X. Then, the paiX = (X, «) is called aU-variety. For
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U-varietiesX = (X, ax) andY = (¥, ay), a rational morphisny : X — Y is called aU-
morphismif it commutes with the action of/.

Now, we define thé/-variety structure orB~ = U~ T. By Proposition 2.4B~ is an
ind-subgroup of5 and hence an ind-variety ovér. The multiplication map irG induces
the open embeddindd~ x U <— G, which is a birational isomorphism. Let us denote the
inverse birational isomorphism ky

g:G— B x U

Thenwe define the rational morphismis : G — B~ andr : G — Ubyn™ ;= projg-o g
andx := proj;, o g. Now we define the rationdl-actione g- on B~ by

ap-'=n om:UxB™ — B,
wherem is the multiplication map irG. Then we obtairU-varietyB~ = (B, ap-).
Definition 3.5.

() Let X = (X, o) be aU-variety andf : X — B~ be aU-morphism. The pairX, f) is
called aunipotentG-crystalor, for short,unipotent crystal

(i) Let (X, fx) and (Y, fy) be unipotent crystals. A/-morphismg : X — Y is called
a morphism of unipotent crystai$ fx = fy o g. In particular, ifg is a birational
isomorphism of ind-varieties, it is called @&omorphism of unipotent crystals

We define a product of unipotent crystals followifig. For unipotent crystalsX, fx),
(Y, fr), define a morphismxxy : U x X x Y - X x Y by

axxy(u, x,y) = (ax(u, x), ay(w(u - fx(x), y)). (3-3)
If there is no confusion, we use abbreviated notatipn y) for ax«y(u, x, y).

Theorem 3.6 (Berenstein and Kazhdd#]).

(i) The morphisnxy defined above is a rationd@l-morphism onX x Y.
(i) Letm: B~ x B~ — B~ be a multiplication morphism angd = fxxy : X x ¥ —
B~ be the rational morphism defined by

fxxy :=mo (fx x fr).

Thenfyx«y isaU-morphism andX x Y, fxxy) is a unipotent crystalWwhich we call
a product of unipotent crystalX, fx) and(Y, fy).
(iii) Product of unipotent crystals is associative
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3.3. From unipotent crystals to geometric crystals

Fori € I, setUs := U* N5UFs; L and Ul = U* N5U*5; % Indeed, U = Udy,.
Set

Yj:ai = <x:|:a,-(t)Uax:I:a,-(_t)|t eC, ae AEE\ {Fa;}).
Lemma 3.7 (Kumar et al[12,14])). For a simple rooty; (i € I), we have

() Yio, = UL.
(i) U* = U - Yoy (semi-direct produdt
(i) 5¥ias = Yia,.
By this lemma, we have the unique decomposition;

U™ =U] - Yig=U_g - U..

By using this decomposition, we get the canonical projectian/~ — U_,,. Now, we
define the function o/~ by

Xi 1=y,-_10€i1U_—>U—a,«—><C,

and extend this to the function a8~ by x;(u - 7) := x;(u) foru e U~ andt € T. For a
unipotentG-crystal X, fx), we define a functiop; := (pix : X —> Chy

@i = xiofx,
and a rational morphismy : X — T by

yx = projrofx : X - B~ — T, (3.4)

where proj is the canonical projection. Suppose that the funggiais not identically zero
on X. We define a morphis : C* x X — X by

%i(x)
Theorem 3.8 ([1]). For a unipotentG-crystal (X, fx), suppose that the functian is not
identically zero for any € I. Then the rational morphismgy : X — T ande; : C* x
X — X as above define a geomettcrystal(X, yx, {e;}icr), which is called the induced
geometricG-crystals by unipoten;-crystal (X, fx).

() = x; (C — 1) (). (3.5)

Note thatif1], the caseg; = 0forsome € I are treated by considering Levi subgroups
of G. But here we do not treat such things.

The following product structure on geometric crystals are most important results in the
sense of comparison with the tensor product theorem in Kashiwara’s crystal theory.
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Proposition 3.9. For unipotentG-crystals(X, fx) and(Y, fy), setthe productZ, f7) :=
(X, fx) x (Y, fr),whereZ = X x Y.Let(Z, yz, {e;}) be the induced geometrig-crystal
from(Z, fz). Then we obtain

() yz=mo(yx x yr).
(i) Foreachiel, (x,y) € Z:

Z _ X ‘Piy()’)
@i (x, y) = ¢ (x) + w(x () (3.6)
(i) For anyi € I, the actione; : C* x Z — Z is given by € (x, y) = (e;*(x), €2(»)),
where
_ cailyx()ef (x) + o () _eilrx@)ef () + ¢/ ()
- X Y 3 c2 = X 1Y . (37)
ai(yx(x)e; (x) + ¢; () ai(yx(x))e; (x) + c o/ ()

Here note thatic, = ¢. The formulac; andcz in [1] seem to be different from ours.
Thus, we give the proof of (iii). Others are obtained by the same way[4$.in

Proof. By using the result (ii), we have

ol ()

Z(x. y) = oX
or (%, y) =i (x) + ()

Here we sefd := (¢ — 1)/(piz(x, y) for (x, y) € Z. Since by (3.3) we have

e (x, y) = xi(A)(x, y) = (xi(A)(x), m(xi(A) - fx(x))()),

we get ¢1 — 1)/¢(x) = A, and then we obtaim in (3.7).
Let us seey. Writing fx(x) =u -t (u € U™,t € T), by Lemma 3.1 (3.2) ifil], we get

r(xi(A) - fx() = (A~ + ()™ ™)

Sincey;(u) = ¢;(x) ande;(f) = a;(yx(x)), we obtain

A
mld) - fx () == ((1 + Awi(x»a,-(yx(x»> '

Now, set B = A/(1+ ApX(x))ai(yx(x)). Substituting A = (c — 1)/¢?(x,y) and
(c2 — 1)/¢¥ (y) = B, we obtain the formula; in (3.7). O
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4. Crystal structure on Schubert varieties
4.1. Highest weight modules and Schubert varieties
As in Section 2 let G be a Kac-Moody groupB* = U*T (resp.U®) be the Borel

(resp. unipotent) subgroups @ and W be the associated Weyl group. Here, we have the
following Bruhat decomposition and Birkhoff decomposition.

Proposition 4.1 ([12,15,22). We have

G= U BTwB" = U UtwBt  (Bruhat decomposition), 4.1)
weW weW

G= U B wBT = U U~ wB"t  (Birkhoff decomposition). 4.2)
weW weW

Let J C I be a subset of the index setand W; := (s;|i € J) be the subgroup oW
associated withy. SetP; := BTYW;B* and call it a (standard)arabolic subgroupf G
associated witly c 1. The following lemma is well-known.

Lemma 4.2. Any cosetirlW/ W, contains a unique element* of minimal lengthand for
anyw’ € W,, we havd(w*w’) = [(w*) + [(w').

We denote the set of the elementsas inLemma 4.2y W/, which is a set of represen-
tatives of W/ W, in W. There exist the following parabolic Bruhat/Birkhoff decompositions.

Proposition 4.3 ([12,15,22). LetJ be a subset of and, W; and W’ be as above. Then
we have

G = U Utw*py, G = U U~ w*Py.

wreW/ w*eW/
4.2. Unipotent crystal structure on Schubert variety

For A € P, (P4 is the set of dominant integral weight), let us denote an integral highest
weight simple module with the highest weightby L(A) [6] and its projective space by
P(A) := (L(A) \ {0})/C*. Letv, € P(A) be the point corresponding to the line containing
the highest weight vector df(A) and set

X(A) =G -vs C P(A).

SetJ, :={i € I|{h;, A) = 0}. By Proposition 4.3nd the fact thaP;, is the stabilizer of
v4, we have the isomorphism betwe&{A) and the flag varietys /P, , .

Proposition 4.4 ([15,22). There is the following isomorphism and the decomposition

p:G/P;, = | ) U*wP;,/P;,—X(A)
weW/a

g Py g va
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Definition 4.5. We denote the image(U wP,,/P;,) (resp.o(U~wP,,/P;,)) by X(A)y
(resp.X(A)*) and call it afinite (resp. co-finite)Schubert celbnd its Zariski closure in
P(A) by X(A),, (resp.X(A)¥) and call it afinite (resp. co-finite)Schubert variety

The names “finite” and “co-finite” come from the fact
dim X(A)y = I(w), codimy4)X(A)" = I(w),

Indeed,X(A),, = C®), There exist the following closure relations:

X(Aw= || x@),. X@'= |] x@). (4.3)

yfw,yEWjA yzw,yeW]A
Indeed, by{12, 7.1, 7.3]
X(A), andX(A)¥are ind-varieties (4.4)

Let us associate a unipotent crystal structure Wit ),,. Since by the definition ak(A),,
andProposition 4.4we haveX(A), = Utw - v,, the following lemma.

Lemma 4.6. Schubert celX(A),, is aU-variety.

Next, let us construct &-morphismX(A),, — B~. For that purpose, we consider the
following: let w = s;;s:, - - - 55, be a reduced expression and gt= U N wU-w 1 and
U = UNwUw L. Define

B1 = aiy, B2 = iy (@iy), - s Bre = SigSip - - Sip_y (i),
then we have

Uy :=Up, - Ug,--- Ug,.

This is a closed subgroup &f and we have an isomorphism of ind (algebraic)-varieties
[22]

Uy = Up, x Ug, x -+ x U, = C, (4.5)
by
U - = Uy, Siy * Unyy S5 -+ + Us 55, —CF,
xip(a1)siy - xiy(@2)siy - - - - xi (ax)si, = (a1, a2, ..., ax). (4.6)

Lemma 4.7 ([22, 2.2).

(i) We have a decomposition

U=U, U" (4.7)
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and this decomposition is unique in the sefifseivy = usvo(u; € Uy, v; € UY), then
u1 = up andvy = vy.
(i) Foranyw e W/4(A e P,), there exists an isomorphism of igagebraig-varieties

8 Up—> X(A)w
U>U-Vyp
The following lemma is the first step for our purpose.

Lemma 4.8. For anyu € U andw € W, there exist unique’ € U,, - w andv € U such
thatuw = u'v.

Proof. By Lemma 4.Ti), there are uniquet” € U,, andv” € U¥ such thatu = u”v".
By the definitionU® = U N wUw™?1, we havew 1v"w e U. Thus, setting/’ = «”w and

v =w "w, we get the desired result. O
By using this decomposition, we define the following rational morphisms;
pw:U-w— Uy -w
uw > u’
pY U -w— U
Uw > v

Define a rational/-action onU,, - w by

UxUy -w— Uy -w

(x, uw) ~ x(uw) == pplxuw) = xuw - p*(xuw)=?*

Next, we show the following lemma.
Lemma4.9. Letn~ : G — B~ andap- : U x B~ — B~ beasinSection3.2Forx € U

anduw € U,w, we have

ap-(x, 7 (uw)) = 7~ (x(uw)).
Proof. We have
7~ (x(uw)) = x(uw) - t(x@w)) "t = xuw - p* cuw) truw - p* uw) )t

= xuw - p”(euw) L p® Ccuw)m(xuw)

= xuw - w(euw) ! = 7 (xuw)

(sincep” (xuw) € U)

On the other hand,
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ap-(x, " (W) = 7 (xr (uw)) = xx (ww) - ol w@w)
= xuw - w(uw) "t wlxuw - ww) L

= xuw - (uw) "t 7(uw) - T(xuw) "t

-1

(sincer(uw) € U)
= xuw - w(xuw) " =7 (xuw),
which completes the proof. O

Define an isomorphism of ind (algebraic)-varieties
0 X(A)p—Upw
v (v) = 8w,

wherew € W/4 andA e P;. SinceX(A),, is U-orbit of p(w - P, /P;,), U acts rationally
on X(A),. We denote the action afe U onv € X(A),, by x(v).
Lemma 4.10. The isomorphisng : X(A),, — Uy,w is aU-morphism

Proof. It is sufficient to show that(x(v)) = x(¢(v)) for x € U andv € X(A),. Setu =
§~1(v) and then we have = uwv 4. Sincev 4 is stable by the action @f, i.e.,U - vy = vy,
we get

x(v) = pulxuw)(va).

Sincep,,(xuw) € Uyw, we get

¢(x(v) = puw(xuw).

We also have(¢(v)) = x(uw) = py(xuw) and therz(x(v)) = x(¢(v)). O

Define a rational morphisni,, : X(A),, — B~ by f, = n~ o ¢. The following is one
of the main results of this article.

Theorem 4.11. For A € P, andw € W/4, let X(A),, be a finite Schubert cell ang, :
X(A)y, — B~ be as defined above. Then the p@ii(A),,, fw) is a unipoteniG-crystal

Proof. We see thatX(A),, is a U-variety inLemma 4.6 So, we may show thaf, is a
U-morphism. For € U andv € X(A),,, we get

fu@ (@) =77 (¢ (x()) = 7~ (x(¢(v)) = 7~ (x(uw)),
whereu = §~1(v). On the other hand,
x(fuw(®) = x(7~ (V) = x(7” (uw)) = ap-(x, 7~ (uw)).

By Lemma 4.9 we obtainf,,(x(v)) = x(fw(v)), which implies thatf,, is a U-morphism.
O
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In the sense obefinition 3.5ji), ¢ is an isomorphism of unipotent crystals &ifA),,
andU,w.

SinceX(A), < X(A), is an open embedding, they are birationally equivalentelet
X(A)y — X(A), be the inverse birational isomorphism. Thifg,:= f, o w : X(A)y —
B~ is aU-morphism. Then we have

Corollary 4.12. Let X(A),, be a finite Schubert variety anﬂu be defined as above. Then
the pair(X(A)w, fw) is @ unipotentG-crystal

Remark. Note that for alw < w’, we have the closed embeddiKgA),, — X(A). [22],
and the isomorphism

X(A)— lim X(A)y.

wew/A

Nevertheless, in general, we do not obtain a unipotent crystal structuxg¢ohby using
this direct limit since fory < w, the rational morphisnf,, : X(A),, — B~ is not defined
onX(A),.

4.3. Geometric crystal structure axi(A),,

As we have seen iBection 3.3we can associate geometric crystal structure with the
finite Schubert cell (resp. variet®)(A),, (resp.X(A),,) since we have shown that they are
unipotentG-crystals.

Now, let us verify the condition by which the functign: X(A),, — Cis notidentically
zero.

We recall the formula:

b v . a . .
xi(a)y;(b) = { Vi <1+ab) o (1+ab)x; <1+ab> ti=J (4.8)
yj(b)xi(a) if i £ J.

Hence, we have

(O = v (5) o (O)x, (—1> , 4.9)

wheres; = x;(—1)y;(1)x;(—1). We also have
o (a)xj(b) = xj(@*b)a; (a), o (a)y;(b) = yj@a“ib)a; (a). (4.10)
By the formula(4.8), (4.9), and (4.1Q)ve obtain

w@- (3 (3) 1@) = (35 (1) @) -ty 62, @.11)
w@-(n(3)ar@) = (n (3 )a@ra)n (5s). @12

Due to these formula, we get the following lemma.
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Lemma 4.13. For w = s;;8i, - - -5, € W (reduced expressigrandcy, c2, ..., cx € C*,
there exist], c5. ..., ¢; such that

”_(xil(cl);il : xiz(CZ)S_iz s X (Ck)s_ik)

l / 1 / 1 /
= yil <C—3> O!lvl(cl) . yi2 <g> ai\;(cz) ‘e yik (C—/> a;]/((ck). (413)

k

Forwe W, letw = s;,5, - - - 5;, be one reduced expression and set
I(w) = {i1, iz, ..., ix}.

Indeed, this does not depend on the choice of reduced expressiondisisca Coxeter
group. ByLemma 4.13we get

Lemma 4.14. For w € W andi € I, if i € I(w), then the functior; : X(A),, — C is not
identically zero

Now, by Theorem 3.8we have
Theorem 4.15. For w € W, suppose thaf = I(w). We can associate the geometéic

crystal structure with the finite Schubert cél{A),, (resp. varietyX(A),,) by setting(see
(3.4)and(3.5))

. _ .= c c—1
Yw ‘= Projr o fu(respy,, := projr o fu), e (x) = x; (—) (%),
@i(x)

whereproj, : B~ =U"T — T.
_We denote this induced geometric crystal byX(4)y, yw, {eilicr) (resp.
(X(A)w, Yy, leitier))- This geometric/unipotent crystalX(A)wy, yw, {eilicr) is real-

ized in B~ in the following sense.

Proposition 4.16. For w = s;, - - - 5, , define
— 1 v 1 \Y — X
B, = {Yy(c1, ..., cx) =iy o o (€iy) -+ viy o o; (ci) € B™|c; € C*}.

and U-actions omB;, by

u(Yy(er, ..., cx)) i=n (u-Yylcr,...,cx)) (e U).

ThenX(A),, and By, are birationally equivalent vigf,, and isomorphic as unipotent crys-
tals. Moreoverthey are isomorphic as induced geometric crystals
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Proof. By Lemma 4.13 it is sufficient to show that they are birationally equiv-
alent to each other and then we may show tbaf- w and B, are birationally
equivalent viaz—. For that purpose, since we have the isomorphism (4.6) and
the birational isomorphisnB;, = (CX)*, it suffices to show that the correspondence
(c1. ..., cx) <= (¢}, .... ;) in (4.13) is birational. In (4.13), eadfj is a rational func-
tion in ¢y, c2, ..., ¢; obtained by composing the birational morphisms defined by (4.11)
and (4.12) (in particulargy = c;), which implies thatU,, - w and B, are birationally
equivalent. O

Example 4.17. We consider the casg = SL,1(C), i.e., the Cartan matriX = (a;;);, jes
is given by;a;; = 2, a;;+1 = —1 andg;; = 0 otherwise. Herd = {1, 2, ..., n}. Takew =
s182 - - -5, € W. In this case, we can easily find that 7(w) and

7 (x1(c1)s1xa(c2)s2 - - - xp(cn)sn)

=1 (£> ay (c1)y2 <i> ay(c2) - yn (i) o, (cn).
c1 c2 Cn

Here changing the coordinate by= aias - - - ¢; and identifyingy;(a) = I,, + aE;y1;, We
obtain

ai
1a
1.
fo(X(A)i) = qula) == o ;a; € C*
An
1
ai-ap
wherea = (as, ..., a,+1) andayaz - - - a,+1 = 1. By using this explicit presentation, we

describe the geometric crystal structurefg{X(A)g). Sinceg;(u(a)) = 1/a;, we have
¢ (u(@)) = xi(ai(c — 1)) - u(a) - xi(aipa(c™ — 1)
=ul(a, ..., ca;, c_lai+1, ey Apyl)-

Furthermore, we have

vis(ra(ca)saxa(c)sz - - xu(en)sn) = ey (c1)erz (c2) - -ty (cn).-

5. Tropicalization of crystals and Schubert varieties

We use the same notations as in the previous sections unless otherwise stated. We intro-
duce a positive structure on geometric crystals and their ultra-discretizations and tropical-
izations following[1, Sect. 2.5]
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Let T be an algebraic torus ov&rand X*(T') (resp.X.(T)) be the lattice of characters
(resp. co-characters) @f. Let R := C[[c]][¢~] and setL(T) := {¢ € Hom(O7, R)} (Ot
is the ring of regular functions of), which is called a set dbrmal loopson 7. Here we
specify the discrete valuation

v: R\ {0} — Z
Y e oo @nC" > —min{n € Zla, # 0}.

For any¢ € L(T), set deg(¢) := v o ¢|xxr). Since forf1, f> € R\ {0}

v(f1f2) = v(f1) + v(/f2). (5.1)

deg;(¢) can be considered as an elementXn(7) = Hom(X*(T), Z). Hence, deg
can be seen as a map gegL(7) — X.(T). For anyrY € X.(T), define L,v(T) :=
deg;l(kv) C L(T). Since degl(kv) has an irreducible pr&-variety structure andl(7") =
UAVGX*(T) L;v(T), the set of irreducible componentg(L(T)) = {Lkv(T)|/\V. € X.(T)}
can be identified wittX .(T), i.e.,deg; induces the bijectiodégr : mo(L(T))— X (7).

More explicitly, set 7 = (C*) and identify L(T) with (R*).. For 1Y(c) =
(™, "2, ..., c™) (mj € Z), we have

L,v(T)= [ (blc_ml—i— Z apc’, ..., bicT™ + Z anc”) b1, ..., b # O].

n>—mj n>—mj

Letf : T — T’ bearational morphism between two algebraicmhd@. The morphism
f induces the rational morphisi: L(T) — L(T’) and then the magpo(f) : mo(L(T)) —
mo(L(T")), which defines the map def): X.(T) — X.(T").

mo(f)

mo(L(T)) mo(L(T"))
ld;g, \L"IE‘P,A/
deg(f)
X.(T) X.(T

A rational functionf(c) € C(c) (f # 0) is positiveif f can be expressed as a ratio of
polynomials with positive coefficients.

Remark. A rational functionf(c) € C(c) is positive if and only iff(a) > O for anya > 0
(pointed out by M.Kashiwara).

If f1, f2 € C(c)(C R) are positive, then we have

v(f1f2) = v(f1) + v(f2), (5.2)
v (%) — o) — o(f2) (5.3)

v(f1+ f2) = max@(f1), v(f2))- (5.4)
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Definition 5.1 ([1]). A rational morphismf : T — T’ between two algebraic tofi 77 is
calledpositive if the following two conditions are satisfied:

(i) For any co-charactexr” : C* — T, the image of." is contained in domy).
(i) For any co-charactex¥ : C* — T and any character : 77 — C*, the composition
wo folYisa positive rational function.
Denote by Mot (7, T’) the set of positive rational morphisms frdfrto 7.

Lemma 5.2 ([1]). For any positive rational morphismg € Mor* (71, T2) and g €
Mor™ (7>, T3), the compositiorg o f is in Mor™(Ty, T3).

By this lemma, we can define a categgiy whose objects are algebraic tori o&éand
arrows are positive rational morphisms.

Lemma 5.3 ([1]). For any algebraic toriTy, T», T3, and positive rational morphisms
f € Mor™(Ty, T2), g € Mor™ (T3, Ts), we have

degg o f) = deg) o deg(f).
By this lemma, we obtain a functor

UD: T — Get

T +— X.(T)

(f:T = T')— (deg(f) : X«(T) - X.(T")))
Definition 5.4 ([1]). Let x = (X, y, {ei}ic1) be a geometric pre-crystaf, be an algebraic
torus andd : T — X be a birational isomorphism. The isomorphigns calledpositive

structureon y if it satisfies

(i) the rational morphisny o 6 : T’ — T is positive.
(i) Foranyi € I, the rational morphism; g : C* x T" — T’ given by

eiglc,) =0 o€l 06(r)
is positive.

Applying the functoi/D to positive rational morphismgy : C* x 7" — T’ andy o 6 :
T’ — T (the notations are as above), we obtain

¢ '=UD(eip) : 7 x X4(T") — X (T, Y :=UD(y 0 0): X.(T") — X.(T).
Now, for given positive structur@: 7’ — X on a geometric pre-crystal= (X, y, {ei}ic1),

we associate the triple&(.(7"), 7, {¢;}ic;) With a pre-crystal structure (sé#, 2.2]) and
denote it byi/Dy 7/(x). By Lemma 3.3we have the following theorem.
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Theorem 5.5. For any geometric crystat = (X, y, {e;}ics) and positive structuré : 7/ —
X, the associated pre-crysttdDy 1 (x) = (X«(T"), ¥, {éi}icr) is a freeW-crystal (see[1,
2.2))

We call the functoi/D “ultra-discretization” instead of “tropicalization” unlike fi].
The term “tropicalization” here means the inverse tropicalizatiqa)inrMore precisely, for
a crystalB, if there exists a geometric crysta) an algebraic torug in 7, and a positive
structured on x such that/Dy r(x) = B as crystals, we calf atropicalizationof B.

Now, we define certain positive structure on geometric cryBfall = I(w), andw €
W/4) and see thatit turns out to be a tropicalization of (Langlands dual of) some Kashiwara’s
crystal.

Fori € I, let B; be the crystal defined by (see, d.4)

B; = {(x)ilx € Z},
&) = (x+ 1), fix)i = (x — 1), 2;(x); = fi(x); =0 (i # ).
wi(x); = xa;, €i(x)i = —x, i(x)i = x, £(x)i = @j(x)i = —oo(i # j).
For w=sysi,---s;, € W and i = (i1, i2, ..., i) € R(w), we define the morphism

6 : (C** — B, by

1 1
Oi(ct, c2, ..., ck) '=yiy (c_1> ozivl(cl) C Vi (a> ozivk(ck). (5.5)

Similar statements to the following proposition are giveflinTheorem 2.11for reductive
cases. Here we show it for arbitrary Kac—Moody cases by direct methods.

Proposition 5.6.

(i) For anyi € R(w)(w € W, I(w) = I), the morphisn®; defined in(5.5) is a positive
structure on the geometric crystaf; .

(i) Geometric crystalB;, is a tropicalization of the Langlands dual of the crys| ®

Bi, ® - - - ® B;, with respect to the positive structuidci, c2, . . ., cx), or equivalently
UD(B,,) = Langlands dual(B;; @ - - - ® B;,) as crystals

Proof. Itisclearthad), is a birational isomorphism. Since the rational morphjsmB;, —
T is given by

y (yil (i) o (e yi (i) o) (ck)) — &l (c)) o 0.
c1 Ch

we have that o 6; is positive. In order to show thatg : C* x 7" — T’ is positive, we
see the explicit action af onY,,(c1, . .., cx). First let us evaluate;(Yy(c1, . . ., cx)).

Lemma5.7. ForY := y; (a1) - - - yi, (@) € U™, we have

oY) =Y aj,. (5.6)

Lj=1
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Proof. Let{j1, jo, ..., jr}(j1 < j2 < --- < jr) bethe setofindices suchthigf = i. Then
we can write

Y = Ao-yilai;)) - A~ yilaiy,) - A2 yilaiy,) -+ Ar—1 - vilaig,) - Ay,
whereA; .= Hjx<p<js+1 vi,(ai,)(jo =0, jr+1 =k + 1). Here we set
By = yi (— Z aijs) “Am - i ( Z aijs),
m<s<r m<s<r

Then we have

Y =yi Z ai; | -(Bo-B1---By). (5.7)

O<s<r

SinceBg - B1--- B, is in Y_,, and the decomposition (5.7) is unique bymma 3.7 we
have

oi(Y) = Z dij, = Zai./’

O<s<r ij=i
which is the desired result. O
Set
. Gigi; dipi; ;g\ _q . 1
C; =(c;7 ey el cj) Cl:c_l ,

whereg; ; is an ¢, j)-entry of the generalized Cartan matdx By (4.10), we have

Yy(et, ..o ) = yir(C1) - - - yir (Ceyg (en) - - - o (i)
Then byLemma 5.7 we obtain
a 8ii

6iVuer .. a) Y CL=Y g (5.8)

ij=i j=1€1" €7 1€ g €

Forc € Candi € I, define{C}1< <« and{C;lo<j< recursively by

1-a;i
J
Cj

i o
Co=c, CjZCj—i-(Sijinj_l, Cj= =

Then, by using (4.11) and (4.12) repeatedly, we obtain
(@) (Yuler, .. c)) = Yu(Cr, ... Cr). (5.9)
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It is easy to get the explicit form (I_fj:

j 1-ajy i
— c[lu_iem ™
C;= 7 ,
2 t<m<jin=i € Dm + 11 m
where
. 1-aiy,i 1-ai, 4,
Dy i=cq S Chp_1 T Cml - Cj—1C

Now, in (5.9) replacing: with (¢ — 1)/¢;(Yy(c1, .. ., cx)) and using (5.8), we obtain

c—1
ei(Ywlc, ...\ cx))

ei(Yylet, ..., cr)) = x; ( ) (Yu(cr, -, cr)) = Yyu(Ca, ..., Cp),

where
Qjq,i Qi _q,i Qjqi Qi _q,i
Ci=c; Dem=jin=i /€1 Oy 1 m X jemzpi=i V1T € Cm
J= [ Qi _q.i Qiq,i Qi 1.0
Dtem<jim=i /€1 1 Cm F D jemekin=i /€17 Gy Cm
(5.10)

By this formula, it is clear thag; ¢, is positive. We have shown ().

Next, in order to show (i), we see the actionpBn B;, ® - - - ® B;,. Takebj = (b1)i; ®
-+ ® (bx)i, (i = (i1, ..., ix), b; € Z). Since the action of;"on tensor products is described
explicitly in [7], we obtain

Zf(bi) =(B)i; @ Q@ (Br)irs

whereg; — b;

= max| max (c — by — Z bzai,i,> . max (—bm— Zblai’”)

1<m<j, l<m j<mzk, I<m

im=i im=i

—max| max (c — by — Zbl“’liz> . max <—bm - Zbla'?i/)

l<m<j, I<m Jjsm=k, I<m
im=i im:i
(5.11)

Now, we know that (5.10) and (5.11) are related to each other by the tropicalization/ultra-
discretization operations:
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ultra—discretization

G —— B
tropicalization
Cj b]
Ty Tty
x
v z-y

z+y ——->max(z,y)

Qi j i
J Langlands dual J

We have completed the proof of (ii). O

The formula similar to (5.10), (5.11) are given[®y Sect.5.2.For the longest element
wo (in reductive cases).

The following formulae are an immediate consequencePofposition 5.6and
Lemma 3.3which are given implicitly in7] and shown by direct method [@6].

Corollary 5.8. On the crystalB;, ® - - - ® B;,, we have for any1, c2 € Z>g

Eree = gpe if (e ) =0,

E?&Ejﬁrczé‘{z — éjza‘lﬂ‘z;jl if (o(;/, o(j) = (Dljv-, o) = —1,
prttagtaye = pepntagiatan if (o o) = =1 (@, ) = 2,
Elg §§61+62 E?cl+cz Eiji_c1+2cz Ef1+cz E(jg — E(jg Z‘;tlﬂtz 23(71+2('2 Z?r1+rz Z?Cl+r2 e;,‘l if (aly’ Dtj) _ —l, (0‘7 i) - _3

Remark. What we considered iExample 4.17s a different kind of positive structure on
By wherei) = s152 - - - s,. More precisely, we define a rational morphism:

0:(C*)y — B

(a1, ..., an) — yl(%)aI(Q) e yn(é)ai(cn),

wherec; = ajaz - - - a;. Thenitis easy to see thétgives a positive structure aBi; . Indeed,
since we have

ef(Yilc1, ..., cn)) = Yaler, ..., cic1.¢Ci, Cigls - - oy Cn)s
we obtain

e;5(c, (aa, ..., an, an+1)) = (@, . . ., ca;, ¢ Yaii1, ... an, ans1).
wherea; - - - ay+1 = 1. The ultra-discretization of the geometric crystal®pwith respect
to 0 is as follows. SetB := {(x1, ..., xn41) € Z" Y x1 + - - - 4+ x40 = 0} and forx :=

(x1,...,xp41) € E, set

e(x)=(x1,....,xi+c, xig1—c¢, ..., Xp41) (¢ € Z>0),
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and}”f = ¢;“. ThenldD; . (B, v {e;}) is the Langlands dual of the crystl The crystal
B holds the similar structure to some limit of “crystal base for the symmetric tensor module”.

6. Tropical braid-type isomorphisms

As an application of the tropicalization/ultra-discretization given in the previous sec-
tion, we shall give a new proof of the braid-type isomorphisms of cry$t@k In order
to do it, let us give the “tropical braid-type isomorphism” (similar formula is given in
[2D).

To prove the tropical braid-type isomorphism, we need the following well-known facts
(see e.g.[3]).

Lemma 6.1. We have the following identities

(1) TypeAaz: setyy,ia;(f) = s jyi(f)S;l, we have
¥i(@)y;j(b) = Ya;-+a;(ab)y;(b)yi(a). (6.1)
(i) TypeBa((a). o) = —2, (@}, @) = —1): Setyura, (1) = 5,3i(1)s;  @ndyz,1a, (1) =
siyj(f)s;7 %, we have
Yi@)y;(B) = Y2u1a;(@°b) i ta;(ab)y (b)yi(a), (6.2)
Yi(@)Yai+a;(b) = y2o;+a;(2ab) Yo +a;(b)yi(a). (6.3)
(ii)) TypeGa (. o)) = =3, (@Y. &) = —1) : S€lyo,sa,(1) = 5300572, Youmra, (1) =

-1 -1 -1
Siya,'—i-ot_,'(t)si ) y3ot;+0tj(t) = Siy2ai+0!_,'(_t)s[ and)’3a;+2a,-(t) = Sjy30t1+a_,'(t)sj , we
have

yl(a)y](b) = Y3oz,-+2a_,v(Clgbz))’3ai+a_,(agb))’Zai+a_,(azb)Ya;+a;(ab)yj(b)yi(a),

(6.4)
Yai+aj(a)y2ai+aj (b) = y3a,«+2a,~(3ab)y2a,~+a,~(b)ya,-+aj (a), (6.5)
¥j(@)yaa;+a;(b) = Y3u;+20;(—ab)y3a;+a;(b)yj(a)- (6.6)

Proposition 6.2. (Tropical braid-type isomorphismi)/e have the following identities

(i) TypeAx:

1 v 1 v 1 v _
Vi (C—1> o (c1)y; (C_z) aj(c2)yi (C_3> o (ca) = j <c163Cir cz)

ci1c3 +¢2 1 c1c3 + ¢2 c1C2
c1 c1C3 c1C2 cic3+c¢2

(6.7)

(i) TypeBa((e', @j) = =2, (@}, i) = —1):
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yt<1>0l (Cl)y/<l>a (Cz)y:(l)a (C3)yj(1>a (ca)
Cc1 2 c3 C4

1 1 1 1
=Yyj (d_1> Y(d1)yi ( 2) o (d2)y; <d_3> Ol}/(dg)yi <a) o) (ds),

where
c2 2 cic
d1:C4+—<C3+c—) s d) =cica+c3+ —= 3
1
1 1 1 2\ 2 1 ¢ 3 1
d3  c2 54 c1 da c¢3 c¢2 1
(i) Type G (o)) = —3. (@}, o) = —1):

g <c_11> i (ea)y; (0_12> j e ( 13) o (c3)y; ( 14) o (ca)y (0—15)

oy (cs)y; ( 16) o¥(ce) = ) ( " ) oY (dn)y <d_12> o) (d)y; (d_13>
af e (52 ) iy (2 ) s () o

where
1 o\ 1 ca\® 2 3c 3c 3c3e
d1=—2<c3+—2) +—(c5+—4) i i A s
c5 c1 ca c3 c2  c1e3 1
c1 3 c1c3 2 3 3cic3c5 2c1c4  2ca
do = — 5+ +— |\t ) +———F—+—
Cc4 c3 Cz Cc1 c2 c2 c3
+ c1c6 + 2cs,
2 3
1 1/(1 c4 c3 1
—== = ls+—) +=+=
ds ce\ca c3 2
c 3c3e 3c 3 2
SRR e s R
c4a cac4  cica c1c3 €2
1 1 c 1 ca\? ¢ coc4C
S22 e+ ) 42 gg= 2R
ds c¢1 c¢2 ¢4 c3 c5 dids
c1c3c5
4 =

dodg

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)
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Proof. By Lemma 6.1 immediately we obtain thd, and B, cases. Th&; case is quite
complicated to obtain the explicit form df’s. Using (4.10), (6.4), (6.5) and (6.6), we can
write the both sides of (6.10) in the form:

Yaai+20;(A)Y3ai+a; (B)Y2a+a, (C)Var+a; (D)y(E)yi(F)a; (G)er (H).

Then comparing the both sides, we get (6.11), (6.12), (6.13) and (6.14). O

By Proposition 6.2we easily see that eadhis a positive rational function in;’s. Thus,
the map

Ccrco ) > y; (d—ll) oY (@) (d—lz) oY (d)

gives rise to positive structures @],  wherewy is the longest element of the Weyl group of
typeA,, B2 or Go. Then, if we consider the ultra-discretization of this positive structures, we
obtain the so-called “braid-type isomorphisms” between the tensor products of the crystal
B;'s([19]).

Proposition 6.3.
(i) If (o), aj) = (ocjv», a;) =0,
¢ B ® B—>B; ® B;
(x); ® (Y)A/ (y)/ ® (x);.
(i) If (o, ) = (o], 0;) = — 1t

¢ : Bi® B; ® Bi—>B,; ® B; ® B},

(21)i®(22); ® (z3)i>(Max@s, z2—21));®(z1+23)i ® (—Max(-z1, 23—22)),-

(6.15)
(iii) If (o), @) = =1, (@}, ) = =2,
¢2):Bi® B;® Bi® B/—>B;® B; ® B; ® B,
(21)i ® (22); ® (23)i ® (z4)j = (Z1); ® (£2)i ® (Z3); ® (Z4)i,
Z1 = max(a, z2 — 271, 223 — 22),
Zy = maxk1 + z4, 23, 21 — 22 + 223),
Z3 = —max(—z2, —z4 — 221, —222 + 223 — z4),
Z4 = —max(—z3 + za, —z21, 23 — 22). (6.16)

(iv) If (), j) = —1, (@}

j,ai> =-3:
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¢ B®B;®B®B;® B ®B—B;®B®B;®B ®B;® B,
(21)i ® (22); ® (23)i ® (24); ® (25)i @ (z6);
= (Z1); ® (Z2)i ® (Z3); ® (Z4)i ® (Z5); ® (Z6);,
Z1 = maxe, 3z5 — 74, —3z3 + 224, —222 + 323, —3z1 + 22),
Zy = max(1 + z6, 21 — z4 + 3z5, z1 — 323 + 224, 21 — 222 + 323,
—21+ 23),
Z3=z220+24+26 — 21— Zs,
Za=z21+23+25— 22— Zs,
Zs = —max(—z4 + z6, —3z4 + 625 — 26, —623 + 324 — 26,
—3z2 + 323 — 26, —371 — 26),

Zg = —max(—z1, —z2 + 23, —z4 + 225, —223 + 24, —25 + 26). (6.17)

We callg{(k = 0, 1,2, 3) abraid-type isomorphism
Proof. The formula in (6.15), (6.16) and (6.17) are obtained by rewriting the ond®in
Proposition 4.1y using:
ar+ (a2 + (a3 + (- + (@)+ - )+)+)+
= max@y, a1 +az,a1 +ax+as,...,a1+ -+ ax).
In (6.7), the ultra-discretizations ofc3 + ¢2)/c1, c1c3 andeica/(c1c3 + ¢2) are

cic3+c¢
o (2212 ) — maxtlen) + o(ea. vlea) — ules) = maxt(e).vlea) — u(e)
v(c1e3) = v(c1) + v(ca),
v (£> = v(c1) + v(cz) — max@(cy) + v(ca). v(c2))
ciez +c2
= —max(c3) — v(c2), —v(c1))
Thus, replacing(c;) with z;, we obtain (6.15).

Similarly, considering the ultra-discretizationsd&fs in (6.8) and (6.9), we get (6.16).
Here note that ifProposition 6.8ii), we suppos€a,’, o) = —1, (ajv., a;) = —2, which is
the Langlands dual of the condition Rroposition 6.4i).

In order to get the formula (6.17), we consider, evd;) :

v(d1) = max(—2z2 + 3z3, —3z1 + z2, 3z5 — 24, —323 + 2z4, z6.
4—22,24— 71— 23,25 — 21,23 t 25— 22)  (v(cj) =z;), (6.18)

which seems to be different froiy in (6.17). But, it is easy to see that both are same by
the following simple formula:
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Formay,...,mp € Randr, ..., # € R>g satisfyingrs + - - - + 1 = 1, we have
k
max ml,...,mk,thmj = max(na, ..., mg)
j=1

Indeed, in (6.18) we have
24— 22 = 3A1+ 34a, 24— 11— 23= gA1+ 342+ 3 A4,
z5—z21= gA1+ 342+ 3A3+ A tz5—22=3A1+ 1A+ 1A
5 1= a1 T 3A2 T 343 T A4, 3T 25 —122=35A1T 3A37T g4,

whereA; ;= —2zp + 3z3, A2 := —3z1 + 72, Az := 3z5 — z4 and A4 := —3z3 + 2z4.
Hence we hav& = v(d1). Others are obtained similarly. Thus, considering the Lang-
lands dual, we get the desired result. O

7. Affine perfect crystal By, for sy

In this subsection, we see an application of ultra-discretization of geometric crystal on
Schubert cells/varieties defined & ». This application is valid for only affine case, since
by ultra-discretization we obtain so-called (affinization of)“affine perfect crystals”. In this
sense, the result in this subsection has no counterpart corresponding to reductive cases.

Perfect crystals are defined for quantum affine algebras and they play an important
role in studying solvable lattice mod€8,10]. In [8], certain limit of perfect crystals are
introduced, which is denotel,,. This has a remarkable properti@no) = B(c0) ® Boo,
whereB(c0) is the crystal of the nilpotent subalgebra of quantum affine algepig) (See
also[20,21)).

Let us recall the affinization aB, for ?[2. Set weight latticeP = ZAg ® ZA1 & Z36,
whereA; (i = 0, 1) is a fundamental weight ardds a basis vector of null roots. The simple
roots are expressed by = § — 2(A1 — Ag) anday = 2(A1 — Ag).

The affine crystal AffB..) is defined as follows:

Aff( Bs) = (X (D)Ik, | € 7}, wi(z* (1)) 1= k& + 21(Ag — Ay), (7.1)
e ) :=—L  wGO)=l  alO) =l  aCO)=-1 (7.2
o () =T+, W)= -0), (7.3)
a@)=>0-1, ACO) =0+ (7.4)

Here note thaif; = &; .

Now, for G = SL, set

1 1
Be,, = [¥(co.c1) = Yo (—O) o (coy (_1) oY (eD)leo, 1 € X1,
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as inSection 5 which is isomorphic to the Schubert cél(A),,s, as a geometric crystal.
Now we consider the following positive structure 8(j,:

0o : (C*)2 — B

5051
k
(k1) > Y (k, 7)
Proposition 7.1. We havé{Dy,(B;_,,) = Aff( Bx).

S0s1

(7.5)

Note that the algebrﬁg is self-Langlands dual.

Proof. First, let us see the actions @fon Y (k, k/[) explicitly. By (5.8), we get

o) ool

and then it follows from (4.11) and (4.12) that
Y (ck,

()Gl
G (AE) )

Therefore, y 0 6 : (C*)2 — T and e; g, =6 0 €f 06 : (C¥)? — (C*)? are de-
scribed:

(o)) o 0

l
e0,60 - (k, 1) = (ck, cl), eLq, : (k1) — <k, —) ) (7.8)
c

~ =

Thus, by applyind/D we obtain
wt : 7% — X (T)

(7.9)
(k, 1) = koo + (k — Doy = k& + 2(Ag — A1),
& 72 — 72, 7.10)
(k,) = (k+c,1+c), '
& 7% — 72, (7.11)
k, 1) — (k, I —c), '
which coincide with (7.1) and the actions«jfin (7.3) and (7.4). d
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